

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Changelog

All notable changes to this project will be documented in this file.

This project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

	Valid types of change are:
	
	Added for new features

	Changed for changes in existing functionality

	Deprecated for soon to be removed features

	Removed for now removed features

	Fixed for any bug fixes

	Security in case of vulnerabilities

v1.0.3 (2021-10-28)

	### Added
	
	CHANGELOG.md

	CONTRIBUTING.md

	DEVELOPERS.md

	LICENSE.txt GNU_GPL v3

	Version navigation.

	### Changed
	
	code format admits PEP-8 and NumPy Doc standards

	add doc-strings to functions and classes and subpackages

 # Contributor Code of Conduct

As contributors and maintainers of the PyThia project, we pledge to respect
everyone who contributes by posting issues, updating documentation, submitting
pull requests, providing feedback in comments, and any other activities.

Communication through any of PyThia’s channels (GitLab, mailing lists, etc.)
must be constructive and never resort to personal attacks, trolling, public or
private harassment, insults, or other unprofessional conduct.

We promise to extend courtesy and respect to everyone involved in this project
regardless of gender, gender identity, sexual orientation, disability, age,
race, ethnicity, religion, or level of experience. We expect anyone
contributing to the PyThia project to do the same.

If any member of the community violates this code of conduct, the maintainers
of the PyThia project may take action, removing issues, comments, and PRs or
blocking accounts as deemed appropriate.

If you are subject to or witness unacceptable behavior, or have any other
concerns, please email us at nando.farchmin@ptb.de.

 # Contributing to PyThia

We’d love for you to contribute to our source code and to make PyThia even
better than it is today! Here are the guidelines we’d like you to follow:

	[Code of Conduct](#coc)

	[Questions and Problems](#question)

	[Issues and Bugs](#issue)

	[Feature Requests](#feature)

	[Improving Documentation](#docs)

	[Issue Submission Guidelines](#submit)

	[Pull Request Submission Guidelines](#submit-pr)

 Code of Conduct

Help us keep PyThia open and inclusive. Please read and follow our
[Code of Conduct](CODE_OF_CONDUCT.md).

 Questions, Bugs, Features

 Got a Question or Problem?

Do not open issues for general support questions as we want to keep GitHub
issues for bug reports and feature requests. You’ve got much better chances of
getting your question answered on dedicated support platforms, the best being
[Stack Overflow][stackoverflow].

Stack Overflow is a much better place to ask questions since:

	there are thousands of people willing to help on Stack Overflow

	questions and answers stay available for public viewing so your question /
answer might help someone else

	Stack Overflow’s voting system assures that the best answers are prominently
visible.

To save your and our time, we will systematically close all issues that are
requests for general support and redirect people to the section you are reading
right now.

 Found an Issue or Bug?

If you find a bug in the source code, you can help us by submitting an issue to
our [GitLab Repository][gitlab]. Even better, you can submit a Pull Request
with a fix.

Please see the [Submission Guidelines](#submit) below.

 Missing a Feature?

You can request a new feature by submitting an issue to our
[GitLab Repository][gitlab-issues].

If you would like to implement a new feature then consider what kind of change
it is:

	Major Changes that you wish to contribute to the project should be
discussed first in an [GitLab issue][gitlab-issues] that clearly outlines the
changes and benefits of the feature.

	Small Changes can directly be crafted and submitted to the
[GitLab Repository][gitlab] as a Pull Request.
See [core development documentation][developers] for detailed information.

 Want a Doc Fix?

Should you have a suggestion for the documentation, you can open an issue and
outline the problem or improvement you have - however, creating the doc fix
yourself is much better!

If you want to help improve the docs, it’s a good idea to let others know what
you’re working on to minimize duplication of effort. Create a new issue (or
comment on a related existing one) to let others know what you’re working on.

If you’re making a small change (typo, phrasing) don’t worry about filing an
issue first.

For large fixes, please build and test the documentation before submitting the
PR to be sure you haven’t accidentally introduced any layout or formatting
issues. You should also make sure that your commit message follows the
[Commit Message Guidelines][developers.commits].

 Issue Submission Guidelines
Before you submit your issue search the archive, maybe your question was
already answered.

If your issue appears to be a bug, and hasn’t been reported, open a new issue.
Help us to maximize the effort we can spend fixing issues and adding new
features, by not reporting duplicate issues.

The “[new issue][gitlab-new-issue]” form contains a number of prompts that you should fill out to
make it easier to understand and categorize the issue.

In general, providing the following information will increase the chances of
your issue being dealt with quickly:

	Overview of the Issue - if an error is being thrown a non-minified stack trace helps

	Motivation for or Use Case - explain why this is a bug for you

	PyThia Version(s) - is it a regression?

	Reproduce the Error - provide a live example or an unambiguous set of steps.

	Related Issues - has a similar issue been reported before?

	Suggest a Fix - if you can’t fix the bug yourself, perhaps you can point to what might be causing the problem (line of code or commit)

 Pull Request Submission Guidelines

	Search for an open or closed Pull Request that relates to your submission.
You don’t want to duplicate effort.

	Make your changes in a new git branch:

`shell
git checkout -b my-fix-branch master
`

	Create your patch commit, including appropriate test cases.

	Follow our [Coding Rules][developers.rules].

	If the changes affect public APIs, change or add relevant [documentation][developers.documentation].

	Commit your changes using a descriptive commit message that follows our
[commit message conventions][developers.commits].

	Before creating the Pull Request, package and run all tests a last time.

	Push your branch to GitLab:

`shell
git push origin my-fix-branch
`

	In GitLab, send a pull request to pythia:master.

	If you find that the continuous integration tests have failed, look into the
logs to find out if your changes caused test failures, the commit message was
malformed etc. If you find that the tests failed or times out for unrelated
reasons, you can ping a team member so that the build can be restarted.

	If we suggest changes, then:
- Make the required updates.
- Re-run the PyThia test suite to ensure tests are still passing.
- Commit your changes to your branch (e.g. my-fix-branch).
- Push the changes to your GitLab repository (this will update your Pull Request).

That’s it! Thank you for your contribution!

After your pull request is merged

After your pull request is merged, you can safely delete your branch and pull
the changes from the main (upstream) repository:

	Delete the remote branch on GitLab either through the GitLab web UI or your
local shell as follows:

`shell
git push origin --delete my-fix-branch
`

	Check out the master branch:

`shell
git checkout master -f
`

	Delete the local branch:

`shell
git branch -D my-fix-branch
`

	Update your master with the latest upstream version:

`shell
git pull --ff upstream master
`

[developers]: DEVELOPERS.md
[developers.commits]: DEVELOPERS.md#commits
[developers.documentation]: DEVELOPERS.md#documentation
[developers.rules]: DEVELOPERS.md#rules
[developers.setup]: DEVELOPERS.md#setup
[gitlab-issues]: https://gitlab1.ptb.de/farchm01/pythia/-/issues
[gitlab-new-issue]: https://gitlab1.ptb.de/farchm01/pythia/-/issues/new
[gitlab]: https://gitlab1.ptb.de/farchm01/pythia
[stackoverflow]: https://stackoverflow.com/

 # Developing PyThia

	[Development Setup](#setup)

	[Running Tests](#tests)

	[Coding Rules](#rules)

	[Commit Message Guidelines](#commits)

	[Writing Documentation](#documentation)

	[Release Versioning](#versioning)

 Development Setup

This document describes how to set up your development environment to build and
test PyThia, and explains the basic mechanics of using git.

Forking PyThia on GitLab

To contribute code to PyThia, you must have a GitLab account so you can push code to your own
fork of PyThia and open Pull Requests in the [GitLab Repository][gitlab].

Building PyThia

To build PyThia, you clone the source code repository and use pip to install the package.
The package’s only requirements are NumPy and SciPy.

```shell
# Clone your GitLab repository:
git clone https://gitlab.com/<gitlab username>/pythia.git

# Go to the PyThia directory:
cd pythia

# Add the main PyThia repository as an upstream remote to your repository:
git remote add upstream “https://gitlab1.ptb.de/farchm01/pythia.git”

# Build PyThia:
pip install .
```

 Running Tests

 Running the Unit Test Suite

TODO: There are currently not unit-tests available.

 Running the Integration Test Suite

TODO: There are currently not integration-tests available.

 Running the Mock Test Suite

TODO: There are currently not mock-tests available.

 Coding Rules

To ensure consistency throughout the source code, keep these rules in mind as
you are working:

	All features or bug fixes must be tested.

	All public API methods must be documented. To see how we document our

	APIs, please check
out the existing source code and see the section about
[writing documentation](#documentation)

	With the exceptions listed below, we follow the rules contained in
[Google’s Python Style Guide][py-style-guide]:

	We write scientific algorithms, which is why we prefer to stay close
the publications that describe the algorithms. This is why we find it
better to use close-to-mathematical variable and functions names over the
PEP-8 standard in those cases. The code should however be as readable
as possible and contain clarifying context information as comments.

	We prefer readability over performance as PyThia should provide an
easy-to-use environment for uncertainty quantification. The mathematics
is difficult enough to understand, so make it as easy as possible to
see how the code is working.

 Git Commit Guidelines

We have very precise rules over how our git commit messages can be formatted.
This leads to more readable messages that are easy to follow when looking
through the project history. But also, we use the git commit messages to
generate the PyThia change log.

The commit message formatting can be added using a typical git workflow.
in your terminal after staging your changes in git.

Commit Message Format
Each commit message consists of a header, a body and a footer.

The header is mandatory and should not exceed 50 characters.

Any line of the commit message cannot be longer than 72 characters! This
allows the message to be easier to read on GitLab as well as in various git
tools.

Good practices for writing informative git commit messages can be found
in [this cheat sheet][commit-message-cheat-sheet] and this
[blog post][commit-message-blog-post].

Header
The header contains succinct description of the change:

	use the imperative, present tense: “change” not “changed” nor “changes”

	don’t capitalize first letter

	no dot (.) at the end

Body
Just as in the header, use the imperative, present tense: “change” not
“changed” nor “changes”. The body should include the motivation for the change
and contrast this with previous behavior.

Footer
The footer should contain any information about Breaking Changes and is
also the place to reference [GitLab issues][gitlab-issues] that this commit closes.

 Writing Documentation

The PyThia project uses the [NumPy Documentation Style](https://numpydoc.readthedocs.io/en/latest/format.html) for all of its code documentation.

This means that since we generate the documentation from the source code, we
can easily provide version-specific documentation by simply checking out a
version of PyThia and running the build.

Extracting the source code documentation, processing and building the docs is
handled by the documentation generation tool [sphinx][sphinx].

Building and viewing the docs locally
TODO: There is no auto-doc included in the repository yet.

General documentation with Markdown

Any text in tags can contain markdown syntax for formatting. Generally, you can
use any markdown feature.

 Determining Release Versions

We use [semantic versioning][semver] for PyThia releases, that is e.g. v1.0.3.
Given a version number MAJOR.`MINOR`.`PATCH`, increment the:

	MAJOR version when you make incompatible API changes,

	MINOR version when you add functionality in a backwards compatible
manner, and

	PATCH version when you make backwards compatible bug fixes.

Additional labels for pre-release and build metadata are available as
extensions to the MAJOR.`MINOR`.`PATCH` format.

[commit-message-cheat-sheat]: https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
[commit-message-blog-post]: http://who-t.blogspot.com/2009/12/on-commit-messages.html
[sphinx]: https://www.sphinx-doc.org/en/master/
[gitlab-issues]: https://gitlab1.ptb.de/farchm01/pythia/-/issues
[gitlab]: https://gitlab1.ptb.de/farchm01/pythia/
[py-style-guide]: https://google.github.io/styleguide/pyguide.html
[semver]: https://semver.org/

 # PyThia - Uncertainty Quantification Toolbox

The PyThia UQ toolbox uses polynomial chaos surrogates to efficiently generate
a surrogate of any (parametric) forward problem. The surrogate is fast du
evaluate, allows analytical differentiation and has a built-in global
sensitivity analysis via Sobol indices. Assembling the surrogate is done
non-intrusive by least-squares regression, hence only training pairs of of
parameter realizations and evaluations of the forward problem are required to
construct the surrogate. No need to compute any nasty interfaces for lagacy
code.

Why the Name?

Pythia was the title of the high priestess of the temple of Apollo in Delphi.
Hence you could say she used her prophetic abilities to quantify which was
uncertain. Moreover, the package is written in python, so…

Installation of PyThia

If using Anaconda, simply clone the repository and run the setup script to
install PyThia to any environment.
`shell
cd pythia
pip install .
`
PyThia can then be imported from any location with import pythia.

Want to contribute?

Check out the [contribution guidelines](CONTRIBUTING.md) on how to create
issues or file bug reports and feature requests.
Or ever better start developping the PyThia project yourself after reading the
[development guidelines](DEVELOPERS.md).

Roadmap and TODOs

Before the first official release there are several TODOs that need to be dealt
with:

	[] add (correct) LICENSE file for the package according to PTB regulations

	[x] add CODE_OF_CONDUCT and guides for CONTRIBUTING and DEVELOPERS

	[x] add CHANGELOG to clarify what and when things were changed

	[] fix a ![branching model](https://guides.github.com/introduction/flow/) and update the description of it in DEVELOPERS

	[] fix a ![release policy](https://docs.github.com/en/repositories/releasing-projects-on-github)

	
	[] upon release, make the project available at ![PyPI.org](https://pypi.org/) for easy pip installation
	
	[] make it easy to install different versions

	[] make the code citeable

	[] automatically install dependencies (Numpy and SciPy versions)

After making the project public, there are a few necessary user experience
changes that should be done:

	[] create ![stack overflow](https://stackoverflow.com/) hashtag for PyThia

	[] create a homepage

	[] add tutorials (jupyter notebook and as downloadable .py file) to homepage

	[] add docstrings to the code and clean the superficially to make it more readable without changing any functionality

	[] create an auto-doc with ![Sphinx](https://www.sphinx-doc.org/en/master/)

	[] write unit, mock and integration tests

	[] use CD and CI to test and deploy new releases of pythia

	[] create html-doc automatically when new version is released and upload it to Homepage

	Finally, here is a roadmap of features that we plan to add to pythia in the future.
	
	[] speed up evaluation of basis polynomials

	[] integrate tensor train representations of coefficients

	[] add tensor train regression (VMC)

	[] add exponentiation of tensor trains (expTT)

	[] add efficient posterior rejection sampling for tensor trains posteriors (Dolgov paper)

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

